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T H E R M O M E C H A N I C S  OF E L A S T O P L A S T I C  

A N D  S U P E R P L A S T I C  D E F O R M A T I O N  O F  M E T A L S  

A.  A .  M a r k i n  UDC 539.324;539.376 

Using the process theory of A. A. II'yushin, we consider the problem of determining the 
thermomechanical parameters of a material element for specified deformation and temperature- 
variation processes with allowance for the elastic, plastic, and viscous properties of superplastic 
deformation. The relations obtained are applicable for the case of arbitrary stresses and 
finite strains. The strain and stress measures are decomposed into elastic, plastic, and 
viscous components by classifying the processes into reversible, irreversible equilibrium, and 
nonequilibrium processes. 

1. Basic  T h e r m o m e c h a n i c a l  Re la t ions .  A finite deformation process is specified by the law of time 
variation of the measure l~'(t), whose generalized Jaumann derivative coincides with the strain-rate tensor 
[1]. The spherical component 0 (convolution of/~" with unit tensor ~7) is related to the volume change for the 
element by 

dv 
= exp 0, 

dvo 

where dvo and dv are the initial and current volumes, respectively. 
A change in the deviatoric component/~'(t) corresponds to a distortion of the element. The coordinates 

/~" in a polar basis spccify the distortion vector k in II'yushin's five-dimensional space [2]. The end of the 
vector k(t) describes the distortion trajectory with the arc coordinate s(t). The distortion rate is expressed 
in terms of the deviatoric strain rate 1s by the relation ]kl = s = 112d"I~l 1/2- 

The loading process is described by the generalized tensor of actual stresses &(t), which is related to 
/~'(t) by the following expression for the specific (per unit initial volume) elementary work of stresses: 

A ^ 

d~A = &.. d K  = 7". dk +aodO. 

Itere v is a loading vector that corresponds to the deviatoric component 5 and c"0 = (1/3)&--E is the 
hydrostatic stress component. The delta stands for the generalized Jaumann derivative. 

The external thermal action on the element over time At is characterized by the increment in thermal 
energy drQ. The differentials of the state parameters are related by the thermodynamic identity [3] 

d~l + S d t  - d 'A  + drw - 0, (1.1) 

where q/ is the free energy, S is the specific entropy, and d~w is the dissipation in the elementary volume. 
According to the second law of thermodynamics, the entropy differential is expressed in terms of the 

increments in thermal energy and dissipation as follows: 

TdS = d'Q + d'w, d'w >10. (1.2) 

The isotropy postulate implies that, at t = t*, the stress state of an isotropic material element that  is 
unstressed at t -- to is determined by the laws of deformation/~'(t) and temperature variation T(t) specified 
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in the time interval [t0, t*]. Generally, the changes in free energy and entropy are also functionals of the 
deformation process. 

The reaction of the material depends on its properties and on the course of the deformation and 
temperature-variation processes. Hereinafter, we shall distinguish nonequilibrium, irreversible equilibrium, 
and reversible equilibrium processes. 

For an adiabatic process and a constant strain state, the values of all thermomechanical characteristics 
attained in the equilibrium process should be preserved however long. If the rate of distortion and the rate of 
change in volume and temperature  tend to zero, the process approaches an equilibrium process. 

Thus, any nonequilibrium distortion process corresponds to an equilibrium process with the same 
trajectory in II 'yushin's space. As the time parameter one can use any monotonically increasing parameter, 
for example, the distance traveled along the distortion trajectory. Below, the subscript "eq" at the deviator 
and the stress vector denotes an equilibrium process. 

An equilibrium process of transition from state TM, O'M, ~'M, ~M, and SM to state TN, O'N, ~'N, ~N, 
and SN is called a reversible process if, for any reverse transition (with & and T varying arbitrarily) from 
TN and f g  to TM and &M, the values of/~', q/, and S that correspond to the process closed for stresses and 
temperature coincide with the initial values /~'M, ~M, and SM. 

2. M o d e l s  for  E q u i l i b r i u m  and  N o n e q u i l i b r i u m  D e f o r m a t i o n .  We introduce certain 
assumptions on the properties of materials under elastoplastic and superplastic deformation. 

1. Materials remain isotropic during deformation. 
2. The volume change is reversible (in any process, including ones closed for stresses and temperature, 

the volume of a material element does not change). 
3. In the five-dimensional space of equilibrium stresses &eq there is a closed surface ~(~'eq, T) = 0. If 

the end of the equilibrium-stress vector ~'eq is inside or on the surface and "/'eq " grad (I) ~< 0, the process is 
reversible and the surface remains unchanged. If the end of the vector Veq is on the surface and the condition 
"i'eq �9 grad (I) > 0 is satisfied, the process is irreversible and the surface changes. 

4. The initial reversibility surface is a sphere of radius r0; the intensity of equilibrium stresses is 
bounded: 

t=to = r - r0(T) = 0, req < rs(T). 

~'(s) ks, and Ts with a surface In accordance with the assumptions introduced, the current state oeq, 
r = 0 corresponds to the irreversible (plastic) component keq  of the distortion vector. The 
component keq is defined as the value of k obtained in the reversible transition at constant temperature 

from the point r (q ) to the point of the stress space at which v = O. By the definition of reversibility, the 
value of keq is independent  of the shape of the trajectory corresponding to this transition and it is a measure 
of irreversibility for the state considered. For repeated reversible processes, the plastic component remains 
unchanged: 

keq - 0. (2.1) 

We denote by kr the varying (elastic) component of the vector k in reversible deformation. At an 
arbitrary point r in the reversibility region, keq is given by 

ke = k - keq. (2.2) 

It Mlows from (2.1) that  k = ke in the reversible region. When the process is irreversible, the plastic 
component changes; therefore, from (2.2) with/ 'eq �9 grad (I) > 0, we obtain 

i: = + i eq. 

In connection with the assumption of conservation of the isotropy of elastic properties, we assume that 
the free energy at a fixed point of the reversible region is independent of the plastic strain component. We 
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write the total energy in the form 

= k0(ke, 0, T). (2.4) 

Considering an elementary equilibrium process closed for stresses and temperature, we find the 
increment in dissipation d'w at the irreversible stage: 

dtweq = "/'eq " dkeq = O'eq--d/'l'eq. (2.5) 

We define the viscous component of the stress deviator bv as the difference between the nonequilibrium 
and equilibrium values of the deviator at the same point of the distortion trajectory 

a'v = b - ~eq. (2.6) 

Denoting the difference between the increments in dissipation for nonequilibrium and equilibrium 
processes by d~wv, we have 

dtw --'- dtweq + dtwv �9 (2.7) 

Expressions (2.3)-(2.7) are substituted into the thermodynamic identity (1.1) to give 

O~ O~ O~ 
O'eq - -  0/~'e' O'0 = 00 '  S = -0 -T '  d 'wv  = ~'v..d'A', (2.8) 

where I~'e is the elastic component of the measure/~'. 
The second thermodynamic equation (1.2) yields the increment in thermal energy: 

T (  02@ a2~ dKe + o2k~ • ' 
d'Q = - \ - - ~  dT + OTOR--~ -o-T--~] - -  d t w e q  - d wv. (2.9) 

Relations (2.8) and (2.9) must be supplemented by equations that define the plastic component of 
the distortion vector and the viscous component of the stress vector. We use the maximum principle for the 
dissipation production [2], according to which the actual direction of the stress vector corresponds to the 
maximum value of the dissipation rate. We assume that  this principle is valid for both the plastic and viscous 
components of dissipation. It follows from (2.5) that the rate Weq is maximal if the vectors Veq and keq have 
the same direction. Consequently, we have 

Teq/Teq ~--- keq/.Seq, (2.10) 

where Seq = Ikeql is the plastic strain rate. 
From (2.10) and (2.5), we obtain the following evolution equation for kcq: 

= Weq s162 (2.11) 
7"eq ,5e2 q 

From the expression for the production of the viscous dissipation component and (2.8), we find the 
viscous component of the loading vector 

@v 
rw = 7 ~" (2.12) 

The vector properties of the material are defined by Eqs. (2.11) and (2.12), and the scalar properties 
depend on Weq and wv, which are functionals of the deformation and temperature-variation processes. 
Moreover, since the functional of the plastic-dissipation component is invariant with respect to the choice 
of the time parameter, it can be specified on the plastic deformation trajectory. Hence, we have 

-,.~eq 
Weq(.~eq) = Aeq[keq(Seq),T(scq)J0 , (2.[3) 

where Aeq is a functional operator that is universal for the given material. 
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The functional wv  depends heavily on the distortion law ~ = s(t). Therefore, it can be generally written 
as 

wv(c)  = Av[k(t) ,T(t)]i: ,  (2.14) 
where te is the moment of exit into the irreversible region and A v  is a "viscous" operator. 

Thus, if the free-energy function (2.4) and the dissipation functionals (2.13) and (2.14) are specified, we 
obtain a closed thermodynamic model for the material. It comprises the system of evolution equations (2.5)- 
(2.9), (2.11), and (2.12) and allows one to predict the material response to various thermodynamic actions. 
In particular, the primal thermodynamic problem is to find the laws of variation of the thermodynamic 
parameters &(t), q(t),  S(t) ,  w(t),  and Q(t) for specified deformation and temperature-variation laws. 

3. C o n c r e t e  Defini t ion of the  Model  of  E las top las t i c  and Superp las t i c  Deformat ion .  We 
assume that the rate of plastic dissipation is a function of the plastic trajectory length and the temperature: 

tVeq = req(Seq, T),~eq. (3.1) 

The presence of the factor -~eq is required to satisfy condition (2.13) in integrating (3.1) with respect to time. 
We regard the rate of viscous dissipation as a function of Seq, distortion rate, and temperature: 

=  v( eq, 8, r ) .  (3.2) 

From (2.8) and (2.11) and (3.1), we find the elastic and plastic components of the deviatoric strain 
rate. Substituting these into (2.4), we arrive at the following equations describing equilibrium deformation: 

OSeq 7:eq ~ I/~ r. (23.23) (0 0 _A+ 
\ 0 ~ ' e f  " O'eq 0Teq req 

According to (2.12) and (3.2), the viscous component of the stress deviator has the form 

~v : rv(S~q, .~, T) -:-. (3.4) 

Integrating Eqs. (3.3) and (3.4) for known l~(t) and T(t )  and specified initial conditions, we obtain 
time dependences of the deviatoric components of the stress tensor. The time dependence of the spherical 
component is found from (2.8). 

We formulate the initial conditions and conditions of integration in the reversible and irreversible 
regions. A solution (elastic) in the reversible region follows from (3.3) for l/]Z~q = 0 and it is valid provided 
that 5-<? ~< r0 2. An equilibrium solution is obtained by integrating (3.3) subject to the initial condition 

I : 5"0, where do is the deviatoric component on the initial surface of reversibility. O'eq t = t o  

Integration of (3.3) over the segment [t0,t] yields the law of variation for the equilibrium-stress 
component 6eq(t). It should be noted that the variation of the thermomechanical parameters of the equilibrium 
process is independent of the nonequilihrium-stress component. However, the viscous-stress component 
depends on Seq and, hence, on the solution (3.3). Summing up the plastic and viscous components, we obtain 
the law of variation of the stress deviator in the nonequilibrium process considered. 

In studying real processes, it is necessary to have specific representations of laws (2.4), (3.1), and (3.2). 
We write the free energy as is done in the linear theory of thermoelasticity [3]: 

1 c(Z - To) 2 1 2 (:3.5) 
= - S o T  - b(T - To)O 2 To + F KO2 + Gke' 

where So is the entropy in the undeformed state, b is a coefficient that takes into account the volume change 
due to temperature change, c is the heat capacity, K is the bulk modulus, and G is the shear modulus. 

Taking into account that the stress intensity must be bounded in equilibrium deformation, we write 
the plastic hardening law in the form 

rs - r0 In ( ~ -- ro.'~, (3.6) 
8eq -- 2Geq \ ' I s  - Teq]  
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TABLE 1 

�9 si  �9 10 3, s e c - 1  

m 

0.4 
2.5 
5.0 
7.5 

hi, MPa 

14 
28 
35 
40 

m i  

0.40 
0.38 
0.33 
0.32 

where rs(T) is the limit of plastic hardening (yield point), which depends on temperature,  and 2Geq = 

(OTeq/OSeq)]seq= O -  is the initial tangent modulus of the hardening curve. 

To describe the viscous properties of superplastic materials, we use the experimental data of [4-6]. 
According to these data, high-rate hardening is observed in a bounded range of distortion rates. This condition 
is satisfied by the following approximation of the high-rate hardening law: 

TV = Teq(Seq , T)[exp (2m0 arctan(~/~0)) - 1]. (3.7) 

To clarify the meaning of the parameters  too(T) and k0(T) in (3.7), we consider a simple loading 
process in which the direction of the stress vector r remains unchanged. In this case, we have r = TV + Teq. 
Moreover, at the stage where there is no plastic hardening and req ~ Vs, the scalar properties of the material 
are described, according to (3.7), by the  expression 

v = vs(T) exp (2m0 arctan(~/~0)). (3.8) 

We write relation (3.8) in the logarithmic coordinates In (r/~'s) and In (~/~m). The high-rate hardening 
modulus is 

dln ( r / r s )  2rn0(k/k0) (3.9) 
m - 

din (~/-~0) 1 + (~/s'0) 2 

and it takes a maximum value rn0 for ~ = ~0- Thus, m0 and s0 are the modulus and rate of superplasticity, 
respectively. 

In processing experimental da ta  on extension-compression, it is convenient to write m in the form 
m = din (a/O'l)/dln (s/s1), where a l  and Sl are known values of the stress and the corresponding distortion 
rate in extension-compression. 

Table 1 lists the experimental da ta  of [4] on the extension of samples of AMG6 alloy at T = 450~ 
(since the data  are taken from diagrams, they are rather approximate). The last column of Table 1 contains 
estimates of the high-rate hardening modulus calculated via finite increments of stresses and strain rates. 

Substituting the values of ml  and m2 (see Table 1) into formula (3.9), we obtain a system of two 
equations defining the modulus and ra te  of superplasticity. In our case, m0 ~ 0.4 and s0 ~ 1.95 �9 10 -3 sec -1. 
These estimates agree well with the following values of [6, p. 20] obtained for extension of AMG6 samples at. 
T = 400~ m0 ~ 0.38 and .~0 ~ 1.5 �9 10 -3 sec -1. 

4. D e f o r m a t i o n  P r o c e s s  w i t h  P l a n e  S t resses .  We consider deformation processes that develop 
under conditions of plane stresses. Let the  Cartesian coordinate axes Oxl and Ox2 lie in the plane of stresses: 
consequently, c~i3 = 0. We write the velocity field in the form 

V1 = 2W12(t)x2(t) + Wnx l ,  V2 = ~2x2 .  (4.1 

The velocity field (4.1) is close to the one observed in experiments on combined loading of thin-walled 
cylindrical samples. The velocities of points of cross-sections of the sample are written as 

R0 )~1 . 
Vl : "~0 ~2 ~x2 "]- (ln.~l)'Xl, V2 = (ln A2)'x2, (4.2) 
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where R0 and L0 are the initial radius and length of the sample, respectively, A1 and A2 are the relative 
changes in the radius and length of the sample, and c 2 is the angle of rotation of the section x2 = L. 

Differentiating the stress tensor with respect to t ime using the Jaumann  derivative, we have 

&A = b + & . & - - & - & ,  (4.3) 

where the nonzero components  of the rotation tensor & are w12 = -w2~ = (1/2)(V1,2 - V2,1). Assuming that  
the material  is incompressible, from (3.3), (3.5), (3.6), and (4.1)-(4.3), we obtain the following system of 
equations describing the process of equilibrium distortion: 

1 : r/~ 10"eql___~2 1 : r/~ 10"eql2 - 
2G O'eqll -]- 2A~- 2G + ~O'eqll m. (In A1), 2---G 0.eq22 2A, 2G + A~ = (In A2), 

" (4.4) 
1 �9 r ~ l  r~ l  

where r = Ro/Lo and A = (rs - TO)-§ - req)). 
In particular,  if the laws of motion of the end cross section ~(t),  Al(t), and A2(t) and the tempera ture  

variation are specified, integration of system (4.4) gives the laws of variation for the equilibrium components  
of the stress tensor. Then, from (3.4) and (3.7), we determine the viscous components  and the change in the 
stress state. 

As an example, we consider extension along the Ox2 axis with subsequent torsion. In this case, 0.11 = 
0.33 --- 0 and the deviatoric components have the form 

1 2 
0"11 : O'33 : - - 5  0"22' ~22 : ~ 0"22- (4.5) 

Assuming that  plastic hardening is almost absent at the extension stage, we have Teq --~ "l s and § ~ 0. 
The  coefficient A becomes undetermined and the system degenerates into a flow equation of the Prandt l -Reuss  
type. According to (4.5), the yield condition has the form 

( ~  e2q 2 ) 1/2 
r~ = 0" 22 + 20.~qU (4.6) 

Condition (.'t.6) is satisfied identically if one introduces the angular parameter  a and writes the stress 
components  as 

" CYeq22 -= s COS a ,  0.eql2 = ~ sin a.  (4.7) 

Subst i tut ing (4.5) and (4.7) into system (4.4) and assuming that  the length of the sample remains 
unchanged in torsion (A2 = const), we obtain the following system of two differential equations for a(c2) and 

d rrs 
d--~(A11) = 8v/-~GA2 s ina;  (4.8) 

(r/~l)_1)~ 2 do~ vZ2G - - -  c o s a - - -  (4.9) 
dc2 rs 4 

It follows from (4.8) that  for real materials, for example, a luminum alloys (ws/G ~ 10-3), the parameter  
)~1 remains constant during torsion. In integrating (4.9), we assume that  the value of/~I obtained in tension, 

which is equal, by virtue of incompressibility, to A2 "x/2, is retained. Neglecting terms of order rs/G compared 
to unity, integrating (4.9), and adding the viscous components,  we obtain the laws of variation for the stress 
components  at the torsion stage: 

2 exp (kcp) r s ( 1 - e x p ( 2 k ~ )  + exp (2m0 arctan (~/s'0))) 
322 = Ts exp(2k~)  + 1' 0.12 = x , ,~\ l  T e x p ( 2 k ~ )  
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0 2 4 6 8 ~-10 -3 

Fig. 1 

where k = vf2rX23/2G/rs and ~ = ~23/2~/v~.  

We note that the same result is obtained if the absolute derivative with respect to t ime is used instead 
of the Jaumann derivative. Consequently, the choice of the derivative does not affect stresses at the yield 
stage. 

Figure 1 shows the stresses ~22 (dashed curve) and crl2 (solid curves) versus the angle of rotation. The 
diagrams are plotted for AMG6 material with T = 450~ A2 = 1.2, r = 0.25, m0 = 0.4, 50 = 1.95.10 -3 sec -1, 
rs = 15 MPa, and G = 2.7.104 MPa (curves 1-3 correspond to the relative strain rates sl /s0 = 1, s'2/s0 = 10 -1, 
and ~3/s0 = 10 -2, respectively; curve 4 shows the variation of Crl2 in the equilibrium process). One can see 
that, regardless of the strain rate, the tensile stress decreases rapidly as ~ increases, and this supports the 
well-known lag effect for the vector properties. The fact that a22 is independent  of the rate is due to the 
absence of additional axial strain in torsion. The shear stresses rapidly reach stat ionary values, which increase 
with increase in the strain rate. 

5. C o m p a r i s o n  w i t h  t h e  D e t e r m i n i n g  R e l a t i o n  of  S m i r n o v  [6]. Smirnov [6] suggested that the 
deformation process be described by the following expression (in our notation): 

Vr = ( mlkv)l/mv ( r  - rs)l/mv - (5.1) 
T 

Here ky and m v  are constant parameters in an isothermal process. 
From (5.1), we find the following relation between the stress intensity and the strain rate: 

= (  v,mkv +  sr )l( m kv + (5.2) 

In contrast to relations (3.3)-(3.6), formula (5.1) takes into account only rate hardening and does 
not describe the lag effect of the vector properties and the stages of elastic loading and unloading. Thus, 
Eqs. (3.3)-(3.6) are more universal, and this is important  in describing nonuniform deformation in which the 
different parts of a body can be in elastic, elastoplastic, and superplastic states at the same time. 

It is of interest to compare law (5.2) with expression (3.8). The lat ter  is valid, as (5.2), at the stage 
where plastic hardening is absent. Both approaches take into account the bounded influence of the strain rate 
on stresses. Indeed, it follows from (5.2) that  lim r = rs and lim r = rm. Moreover, from (3.8), we have 

.~0 ~ c ~  
lim r = r s a n d  

lim T = Vm = rs exp (m01r). (5.3) 
.~--*oc 

In studies dealing with the superplasticity phenomenon, rs is callcd the critical stress and rrn the yield point. 
The four parameters Ts, rm, ky, and m y  in (5.2) should be determined. The parameters ky and mv  

have no simple mechanical meaning. In particular, m v  does not coincide with the maximum value of the 
high-rate hardening modulus (3.9). 

In (3.8), one should determine experimentally the three constants rs, too, and s0, which have an obvious 
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physical meaning. We note that,  in our case, the critical stress and the yield point are related by (5.:3). On 
the one hand, this reduces the potentials of approximation, but, on the other hand, instead of rs, one can use 
the more reliable value rm. It is well known that experiments on direct determination of the critical stress 
are very labor consuming and lead to considerable scatter in results. Smirnov [6] gives values ~rm = 3 MPa 
for A1-33% Cu alloy at T = 520~ and ~s = 0.3 MPa at T = 477~ and m0 = 0.63. It follows from (5.3) 
that C~m#rs ,,~ 7.4. For Mg-6%Zn-6.5% Zr alloy, we have ~rm = 4, as = 1.4, and m0 = 0.46 MPa. From 
(5.3), we find that  ~rm/as ~ 4.5. Although the values of the critical stress are not reliable, formula (5.3) gives 
satisfactory results. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 97-01- 

00321). 
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